direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C22×M4(2), C8⋊4C23, C24.5C4, C4.15C24, C4○(C2×M4(2)), (C2×C4)○M4(2), (C22×C8)⋊12C2, (C2×C8)⋊15C22, (C22×C4).18C4, C23.35(C2×C4), C4.31(C22×C4), C2.10(C23×C4), (C23×C4).11C2, (C2×C4).161C23, C22.27(C22×C4), (C22×C4).127C22, (C2×C4).77(C2×C4), (C2×C4)○(C2×M4(2)), SmallGroup(64,247)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22×M4(2)
G = < a,b,c,d | a2=b2=c8=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c5 >
Subgroups: 169 in 149 conjugacy classes, 129 normal (9 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C2×C4, C23, C23, C23, C2×C8, M4(2), C22×C4, C22×C4, C24, C22×C8, C2×M4(2), C23×C4, C22×M4(2)
Quotients: C1, C2, C4, C22, C2×C4, C23, M4(2), C22×C4, C24, C2×M4(2), C23×C4, C22×M4(2)
(1 10)(2 11)(3 12)(4 13)(5 14)(6 15)(7 16)(8 9)(17 30)(18 31)(19 32)(20 25)(21 26)(22 27)(23 28)(24 29)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 25)(7 26)(8 27)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 28)(2 25)(3 30)(4 27)(5 32)(6 29)(7 26)(8 31)(9 18)(10 23)(11 20)(12 17)(13 22)(14 19)(15 24)(16 21)
G:=sub<Sym(32)| (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,30)(18,31)(19,32)(20,25)(21,26)(22,27)(23,28)(24,29), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,28)(2,25)(3,30)(4,27)(5,32)(6,29)(7,26)(8,31)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21)>;
G:=Group( (1,10)(2,11)(3,12)(4,13)(5,14)(6,15)(7,16)(8,9)(17,30)(18,31)(19,32)(20,25)(21,26)(22,27)(23,28)(24,29), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,28)(2,25)(3,30)(4,27)(5,32)(6,29)(7,26)(8,31)(9,18)(10,23)(11,20)(12,17)(13,22)(14,19)(15,24)(16,21) );
G=PermutationGroup([[(1,10),(2,11),(3,12),(4,13),(5,14),(6,15),(7,16),(8,9),(17,30),(18,31),(19,32),(20,25),(21,26),(22,27),(23,28),(24,29)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,25),(7,26),(8,27),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,28),(2,25),(3,30),(4,27),(5,32),(6,29),(7,26),(8,31),(9,18),(10,23),(11,20),(12,17),(13,22),(14,19),(15,24),(16,21)]])
C22×M4(2) is a maximal subgroup of
C23.28C42 C23.29C42 C24.63D4 C24.152D4 C24.7Q8 C23.15C42 C23.17C42 C24.67D4 C24.9Q8 (C2×C8).195D4 C24.10Q8 C23⋊2M4(2) C24.72D4 C24.75D4 C24.76D4 M4(2)⋊20D4 M4(2).45D4 M4(2)○2M4(2) C24.73(C2×C4) C24.98D4 C42.257C23 C24.100D4 C42.265C23 M4(2)⋊22D4 C24.110D4 M4(2)⋊14D4 M4(2)⋊15D4
C22×M4(2) is a maximal quotient of
C42.677C23 C42.290C23 D4⋊6M4(2) Q8⋊6M4(2) C23⋊3M4(2) D4⋊7M4(2) C42.693C23 C42.302C23 Q8.4M4(2) C42.698C23 D4⋊8M4(2) Q8⋊7M4(2)
40 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | 4J | 4K | 4L | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
type | + | + | + | + | |||
image | C1 | C2 | C2 | C2 | C4 | C4 | M4(2) |
kernel | C22×M4(2) | C22×C8 | C2×M4(2) | C23×C4 | C22×C4 | C24 | C22 |
# reps | 1 | 2 | 12 | 1 | 14 | 2 | 8 |
Matrix representation of C22×M4(2) ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
13 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 13 | 2 |
0 | 0 | 11 | 4 |
16 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 4 | 16 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[13,0,0,0,0,16,0,0,0,0,13,11,0,0,2,4],[16,0,0,0,0,1,0,0,0,0,1,4,0,0,0,16] >;
C22×M4(2) in GAP, Magma, Sage, TeX
C_2^2\times M_4(2)
% in TeX
G:=Group("C2^2xM4(2)");
// GroupNames label
G:=SmallGroup(64,247);
// by ID
G=gap.SmallGroup(64,247);
# by ID
G:=PCGroup([6,-2,2,2,2,-2,-2,96,409,88]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^8=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^5>;
// generators/relations